Oxidation of Furan on Well-Characterized Vanadium Oxide Catalysts

KENJI MORI,* AKIRA MIYAMOTO,†.1 AND YUICHI MURAKAMI†

*Kinu-ura Research Department, JGC Corporation, Sunosaki-cho, Handa, Aichi 475, Japan, and †Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

Received December 5, 1984; revised March 20, 1985

The activity and selectivity in the oxidation of furan on unsupported and supported V₂O₅ catalysts were investigated in connection with the catalyst structure. It was found that the steady-state reaction rate at various concentrations of O2 was proportional to the amount of V5+=O species in the catalyst, indicating that the surface V=O plays the active oxygen species for the reaction. The specific activity of surface V=O species, defined by the rate per surface V=O, for unsupported V_2O_5 changed greatly with the surface structure of the catalyst: The fusion of V_2O_5 markedly decreased the specific activity, while the severe redox treatment of the fused catalyst increased it. This means that the furan oxidation on V_2O_5 catalysts is a structure-sensitive reaction. The specific activity of the surface V=O species for the V2O5/TiO2 and V2O5/Al2O3 catalysts was smaller than that for the unsupported V₂O₅, indicating the retarding effect of the support on the activity. This is in contrast to the known promoting effect of TiO2 support on the activity. The selectivity to maleic anhydride was found to be determined by the number of V₂O₅ layers on support for both V₂O₅/TiO₂ and V_2O_3/Al_2O_3 catalysts. When the number of V_2O_3 layers was 1 or 2, the selectivity was low. while it increased markedly with the increase in the number of V₂O₅ layers to 5, and attained a constant value above 5 layers. The change in the oxidation state of the catalyst did not affect the selectivity. These behaviors in the activity and selectivity in the furan oxidation were discussed in comparison with those in the benzene oxidation. © 1985 Academic Press, Inc.

INTRODUCTION

Supported metal oxide catalysts exhibit interesting catalysis depending on the kind of support and on the composition of the catalysts (1-6). However, the activity and selectivity on the supported metal oxide catalyst have not been well clarified in terms of the structure of the metal oxide on support. This seems to be due to the lack of a well-established method to determine the structure of supported metal oxide catalysts, especially the number of active sites. As for the supported vanadium oxide catalysts, we have previously established the rectangular pulse technique which allows the determination of the number of surface V=0 species (L) and the number of V_2O_5 layers on support (N) (7, 8). This technique is based on the following reactions:

¹ Present address: Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606, Japan.

$$V=O + NO + NH_3 \rightarrow V-OH + N_2 + H_2O$$
 (1)

$$V \longrightarrow OH \xrightarrow{\text{bulk } V = O} V = O + \frac{1}{2}H_2O \qquad (2)$$

together with the introduction of the NO and NH₃ mixture in a rectangular pulse to the preoxidized catalyst and the subsequent detection of the concentration profile of N₂ produced by Reaction (1). The separation of the N₂ formed on the initial surface V=O species from that formed on the reproduced V=O species leads to a determination of L, while detailed analysis of the concentration profile of the N₂ formed on the reproduced V=O species leads to a determination of N. Furthermore, the structures of V₂O₅/TiO₂ and V₂O₅/Al₂O₃ catalysts have been determined by using various physicochemical measurements together with the rectangular pulse technique (9-11).

By investigating the oxidation of benzene on the well-characterized vanadium oxide catalysts, the activity and selectivity in the benzene oxidation have been revealed in terms of the structure of V₂O₅ on the support (12): the activity is determined mainly by the number of surface V=O species, and the specific activity of the surface V=O species is modified by the support. The TiO₂ support promotes the activity of the surface V=O species, while the Al₂O₃ support slightly reduces it. On the other hand, the selectivity to the partial oxidation product (maleic anhydride) is determined by the number of V₂O₅ layers on the support for both V_2O_5/TiO_2 and V_2O_5/Al_2O_3 . For the monolayer V₂O₅ catalyst, the selectivity is very low and benzene is preferentially oxidized to CO and CO₂. As the number of V_2O_5 layers on the support increases to 5, the selectivity increases monotonically and the selective oxidation to maleic anhydride proceeds for catalysts with V₂O₅ layers of more than 5. Since the structure-activity/ selectivity correlation is expected to change greatly with the kind of reactions (13-23), it seems interesting to investigate the correlation for various reactions. The purpose of this study is then to reveal the correlation for the furan oxidation. This reaction was selected because the partial oxidation product (maleic anhydride) of the reaction is the same as that in the benzene oxidation while the structures of reactant molecules are significantly different from each other (24-26).

EXPERIMENTAL

Catalysts

An unsupported V_2O_5 -U catalyst was

prepared by the thermal decomposition of NH₄VO₃ in a stream of O₂ at 773 K. A V₂O₅-F catalyst was prepared by fusing the V₂O₅-U catalyst at 1073 K for 18 h in air, followed by gradual cooling to room temperature. A V₂O₅-RO catalyst was prepared from the V₂O₅-F catalyst by the reduction—oxidation treatment, that is, the reduction in flowing H₂ at 673 K for 1 h followed by the reoxidation in flowing O₂ (20%) at 673 K for 1 h, and this redox cycle was repeated five times.

TiO₂ composed of anatase was prepared by hydrolysis of Ti(SO₄)₂ followed by calcination in air at 873 K, while Al₂O₃ was commercially available (Sumitomo γ -Al₂O₃). BET surface areas of TiO₂ and Al₂O₃ were 48 and 230 m² g⁻¹, respectively. Vanadium oxides supported on the carriers were prepared by impregnation of the carrier with an oxalic acid solution of NH₄VO₃ followed by calcination at 773 K in a stream of O₂ for 3 h. V_2O_5/TiO_2 and V_2O_5/Al_2O_3 monolayer catalysts were prepared by treating V₂O₅/ TiO_2 (10 mol% V_2O_5) and V_2O_5/Al_2O_3 (25 mol% V_2O_5), respectively, with 0.3 N NH₄OH solution for 48 h, followed by drying, and subsequent calcination at 773 K in a stream of O₂ for 3 h (27). Unless otherwise stated, particle size of the catalyst ranged from 28 to 48 mesh.

Characterizations of Catalysts

The number of surface V=0 species (L) on the catalyst was determined by using the rectangular pulse technique (7, 8) under the following conditions: flow rate of the car-

TABLE 1
Physical and Catalytic Properties of Unsupported V₂O₅ Catalysts^{a,b}

Catalyst	S _{BET} (m ² g ⁻¹)	L (μmol g ⁻¹)	L/S _{BET} (µmol m ⁻²)	R (μmol g ⁻¹ s ⁻¹)	R/S_{BET} (μ mol m ⁻² s ⁻¹)	TF (k s ⁻¹)		$S(CO + CO_2)$ (%)	S(CO)/S(CO ₂)
V_2O_5-U	5.4	22	4.1	9.98	1.84	454	77	23	0.54
V_2O_5-F	0.8	4	5.0	0.51	0.64	128	75	25	0.52
V_2O_5 -RO	0.8	4	5.0	0.77	0.96	193	76	24	0.56

^a $S_{\rm BET}$, the BET (Brunauer-Emmett-Teller) surface area; L, the number of surface V=O species; R, reaction rate; S(MA), selectivity to maleic anhydride; $S(CO + CO_2)$, selectivity to CO and CO_2 ; S(CO), selectivity to CO; $S(CO_2)$, selectivity to CO_2 .

^b Reaction conditions: temperature 622 K; $P_F = 0.0074$ atm; $P_O = 0.397$ atm.

rier gas(He) = 150 cm³ min⁻¹; concentration of NO = 4.86×10^{-8} mol cm⁻³; concentration of NH₃ = 9.25×10^{-7} mol cm⁻³; pulse width = 60 s; temperature = 520-630K. Results of L for the unsupported V_2O_5 are shown in Table 1 together with the results of the BET surface area (S_{BET}) . The number of V_2O_5 layers (N) for the catalysts was calculated from L by

$$N = 2/[LM(V_2O_5)],$$
 (3)

where $M(V_2O_5)$ is molecular weight of V₂O₅. According to the results of X-ray diffraction, UV-visible spectra, IR spectra, X-ray photoelectron spectra, and scanning electron micrographs (13, 14), electronic properties of the catalysts do not change from each other while the surface of V₂O₅-U or V₂O₅-RO is rougher than that of V2O5-F.

The L, N, and S_{RET} of the supported catalysts have similarly been determined (8–11) and the results are shown in Table 2. ML is the percentage theoretical monolayer of V_2O_5 (28), which is calculated from the V_2O_5 content (x) and S_{BET} by

$$ML = \frac{N_{\text{A}}x\sigma(\text{V}_2\text{O}_5)}{xM(\text{V}_2\text{O}_5) + (1-x)M(\text{support})}$$
$$\frac{100}{S_{\text{RFT}}} (\%), \quad (4)$$

where N_A is the Avogadro number; $\sigma(V_2O_5)$ is the area occupied by a V₂O₅ unit(20.6 $Å^2$); and M(support) is molecular weight of support (TiO₂ or Al₂O₃).

A catalyst in the steady-state reaction was rapidly cooled down to a room temperature under the inert-gas condition (N₂ or He) to measure the steady-state catalyst structure. IR spectra of the catalyst were observed on a Jasco-EDR-31 emissionless IR diffuse reflectance spectrometer using KBr as a diluent (29).

Catalytic Activity Measurements

Kinetic studies were carried out by using the continuous flow reaction technique under the following conditions; total pressure = 1 atm (1 atm = 101.3 kPa), temperature = 583-653 K, partial pressure of $O_2(P_0)$ = 0-0.397 atm, partial pressure of furan (P_F) = 0.0074 atm, W/F = 60.2-7510 g s mol⁻¹, and nitrogen was used as a balance gas.

TABLE 2 Physical and Catalytic Properties of V₂O₅/TiO₂ and V₂O₅/Al₂O₃ Catalysts^{a,b}

Catalyst (mol% V ₂ O ₅)	S_{BET} (m ² g ⁻¹)	$L \pmod{g^{-1}}$	N	ML (%)	$ \begin{array}{c} R\\ (\mu \text{mol } g^{-1} s^{-1}) \end{array} $	TF (k s ⁻¹)	S(MA) (%)	S(CO + CO ₂) (%)	S(CO)/S(CO ₂)
V ₂ O ₅ /TiO ₂		-							
1	47	56	1-2	32	4.57	82	43	57	0.21
2	45	120	1-2	67	8.50	71	49	51	0.22
5	26	184	2-3	280	35.0	190	73	27	0.36
10	23	135	5-8	600	35.9	266	79	21	0.60
25	10	60	30-40	2800	25.3	422	78	22	0.65
50	7.4	31	50-60	6400	14.8	477	79	21	0.53
Monolayer	32	126	1	_	13.6	108	46	54	0.41
V2O5/Al2O3									
2	221	3	1-2	11	0.48	160	12	88	0.12
5	219	<i>7</i> 7	1-2	27	7.55	98	40	60	0.43
10	168	355	1-3	67	29.0	82	64	36	0.45
25	114	405	2-4	220	40.5	100	64	36	0.62
35	101	365	3-7	330	25.8	71	72	28	0.61
50	66	249	5-15	660	26.3	106	70	30	0.56
Monolayer	174	20	1	_	2.21	110	32	68	0.37
V2O5-U	5.4	22	504		9.98	454	77	23	0.54

^a N, number of V₂O₅ layers on support; ML, percentage theoretical monolayer of V₂O₅ calculated by Eq. (2); see Table 1 for the definitions of $S_{\rm BET}$, L, R, TF, $S({\rm MA})$, $S({\rm CO} + {\rm CO}_2)$, $S({\rm CO})$, and $S({\rm CO}_2)$.

^b Reaction conditions: temperature, 622 K; $P_{\rm F} = 0.0074$ atm; $P_{\rm O} = 0.397$ atm.

Maleic anhydride (MA), CO, and CO_2 were identified as reaction products. Rate of formation of MA was determined by titration with 0.1 N NaOH after its collection with water. CO and CO_2 were analyzed by using gas chromatography. Particular care was taken in eliminating the heat of reaction, and therefore controlling the reactor temperature (± 1 K). The glass reactor was heated to the reaction temperature by using a fluidized bed of sand, and the catalyst was diluted with α -Al₂O₃.

RESULTS

Effects Of O₂ Partial Pressure on Reaction Rates and Catalyst Structures

In the oxidation of furan on vanadium oxide catalysts, the following reactions were found to take place:

$$C_4H_4O(FR) \xrightarrow{O_2} C_4H_2O_3(MA)$$
 (5)

$$C_4H_4O(FR) \xrightarrow{O_2} 4CO$$
 (6)

$$C_4H_4O(FR) \xrightarrow{O_2} 4CO_2$$
. (7)

From the stoichiometries of Eqs. (3)–(5), the rate of formation of each product $[R(MA), R(CO), \text{ or } R(CO_2)]$ is defined as the rate of furan converted to the product. The rate of formation of the total oxidation products(CO and CO_2)[$R(CO + CO_2$)] is defined by

$$R(CO + CO_2) = R(CO) + R(CO_2)$$
. (8)

The total reaction rate(R) and selectivities to partial oxidation product [$S(MA_2)$], total oxidation products [$S(CO + CO_2)$], CO[S(CO)], and $CO_2[S(CO_2)]$ are, respectively,

$$R = R(MA) + R(CO + CO2)$$
(9)

$$S(MA) = R(MA)/R \tag{10}$$

$$S(CO + CO2) = R(CO + CO2)/R$$
 (11)

$$S(CO) = R(CO)/R \tag{12}$$

$$S(CO_2) = R(CO_2)/R.$$
 (13)

Figure 1 shows effects of P_0 on R,

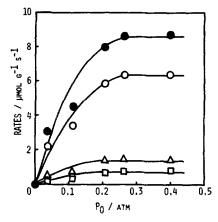


FIG. 1. Effect of P_0 on R, R(MA), R(CO), and $R(CO_2)$ for the V_2O_3 –U at 615 K: (\bigoplus) R; (\bigcirc) R(MA); (\bigcirc) R(CO); (\triangle) $R(CO_2)$; $P_F = 0.0074$ atm; W/F = 164.1 g s mol⁻¹.

R(MA), R(CO), and $R(\text{CO}_2)$ for the V_2O_5 —U catalyst at 615 K. The rates increased gradually with increasing P_0 to 0.262 atm, while they were almost constant at P_0 above 0.262 atm. In spite of the change of the reaction rates with P_0 , S(MA), S(CO), and $S(\text{CO}_2)$ were independent of P_0 as shown in Fig. 2.

According to the results of change in the reaction rates after the stoppage of the O₂ gas supply, the rates decreased gradually with increasing time and attained a negligible value at 8 h after the reaction began. It was also confirmed that both the reaction



FIG. 2. Effect of P_0 on S(MA), S(CO), and $S(CO_2)$ for the V_2O_5 –U at 615 K: (\bigcirc) S(MA); (\square) S(CO); (\triangle) $S(CO_2)$; $P_F = 0.0074$ atm.

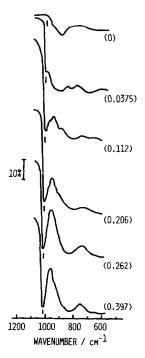


Fig. 3. Infrared spectra of the V_2O_5 -U in the steady state of furan oxidation at various partial pressures of O_2 . Reaction temperature = 615 K, $P_F = 0.0074$ atm. The number in parentheses represents the partial pressure of O_2 .

rate and infrared spectrum of the catalyst attained a steady state under this condition. Figure 3 shows IR spectra of the V_2O_5 -U catalyst in the steady-state reaction at various partial pressures of O₂. The catalyst in the steady-state reaction above 0.262 atm of P_0 gave absorption bands at 1020 and 825 cm⁻¹ which are assigned to the stretching vibration of V=O species and the coupled vibration between V=O and V-O-V species, respectively (30, 31). The absorption at 1020 and 825 cm⁻¹ gradually decreased as P_0 decreased below 0.262 atm, and new absorption bands at 990 and 910 cm⁻¹ were observed for the catalyst in the steady-state reaction below 0.112 atm of P_0 . These bands are assigned to lattice vibrations of V₂O₄ (32). In order to quantitate the change in the amount of V=O species with $P_{\rm O}$, relative absorbance at 1020 cm⁻¹ was calculated from the spectra in Fig. 3, and the results are shown in Fig. 4. As

shown, the amount of V=O species increases almost linearly with P_0 to 0.262 atm, and it is constant above this value of P_0 .

Activity and Selectivity in Furan Oxidation under Excess Oxygen Conditions

Table 1 shows results of R, R/S_{BET} , S(MA), $S(CO + CO_2)$, and $S(CO)/S(CO_2)$ for unsupported vanadium oxide catalysts under excess oxygen conditions where the reaction rate was zeroth order with respect to P_0 and where the catalyst was confirmed to be in the highest oxidation state, i.e., V5+. In accordance with the decrease in S_{RET} , R for V_2O_5 -F or V_2O_5 -RO was much smaller than that for V₂O₅-U. It should be noted that the R/S_{BET} for V_2O_5 -U is much larger than that for V_2O_5 -F, and the R/S_{BET} for V_2O_5 -RO is larger than that for V_2O_5 -F. In contrast to the behavior in the reaction rate, the selectivity, S(MA), $S(CO + CO_2)$, or $S(CO)/S(CO_2)$, did not change significantly with the kind of unsupported V_2O_5 .

Table 2 shows results of R, S(MA), $S(CO + CO_2)$, and $S(CO)/S(CO_2)$ for V_2O_5/TiO_2 and V_2O_5/Al_2O_3 catalysts with various V_2O_5 contents. TiO_2 or Al_2O_3 alone had a negligible activity for the furan oxidation. The reaction rate (R) for V_2O_5/TiO_2 increased

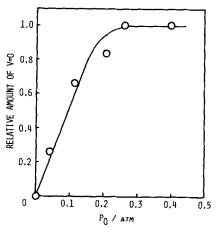


Fig. 4. Amount of V=O in the V_2O_5 -U in the steady state of furan oxidation at various partial pressures of O_2 .

markedly with an increase in V₂O₅ content from 0 to 10 mol\%, passed a maximum at 10 mol% V₂O₅, and then decreased to the value of V₂O₅-U with further increase in V_2O_5 content. The selectivity to MA[S] (MA)] was low for V₂O₅/TiO₂ containing 1 or 2 mol% V_2O_5 , while it reached as high as 70% for catalysts with V_2O_5 content above 5 mol%. V_2O_5/Al_2O_3 with low V_2O_5 content (2 mol%) had only a negligible activity. R increased markedly with increasing V_2O_5 content from 5 to 25 mol\%. R for V₂O₅/ Al_2O_3 (25 mol% V_2O_5) was considerably higher than R for V_2O_5/TiO_2 (5 mol% V_2O_5). S(MA) for V_2O_5/Al_2O_3 with low V_2O_5 content (2 or 5 mol%) was very low, while it increased markedly in the range from 5 to 25 mol% and attained a constant value above 25 mol%. S(MA) for the monolayer V_2O_5/TiO_2 and V_2O_5/Al_2O_3 was low, and total oxidation of furan to CO and CO₂ takes place preferentially. Although Tables 1 and 2 show results for the reaction at 622 K, similar relationships were found to hold at any temperature examined (583-653 K): Apparent activation energy for R was 20-22 kcal/mol for the unsupported V₂O₅ catalysts, 20-21 kcal/mol for V₂O₅/TiO₂, and 22-23 kcal/mol for V_2O_5/Al_2O_3 .

DISCUSSION

Active Oxygen Species for the Furan Oxidation

As shown in Fig. 1, the rate of furan oxidation increased with increasing P_0 to 0.262 atm for V_2O_5 —U and attained a constant value above this value of P_0 . The steady-state amount of the V^{5+} —O species in the catalyst changed with P_0 similarly to the reaction rate (Fig. 4). This suggests that the reaction proceeds by the reduction—oxidation mechanism (or Mars—van Krevelen mechanism) (33) and that the active oxygen species for the furan oxidation is surface V—O species. The IR band at 1020 cm⁻¹ is usually monitoring the change in the concentration of the bulk V—O, and not that of the surface V—O species. Under the

steady-state reaction conditions, however, the band is expected to show the concentration of the surface V=O species, since the surface is in equilibrium with the bulk under the conditions. Adsorbed oxygen species are not responsible for this reaction, because no adsorbed oxygen species, such as O_2^- , O_3^- , or O_3^- , were detected on the catalysts by either ESR or TPD measurement. The observed relationship between reaction rate and $P_{\rm O}$ (Fig. 1) can be explained in terms of the reduction-oxidation mechanism as follows: In the absence of O_2 ($P_0 = 0$ atm), the catalyst is in the reduced state and no surface V=O species is present to oxidize furan. As P_0 increases, the reoxidation of the reduced catalyst by O₂ increase the oxidation state of the catalyst to increase the number of surface V=O species. This means that the reaction rate increases with increasing P_0 . In the presence of excess oxygen $(P_0 > 0.262 \text{ atm})$, the catalyst is in the highest oxidation state, i.e., V₂O₅. Therefore, the increase in P_0 does not lead to further increase in the oxidation state or the number of surface V=0 species, and the reaction rate does not increase with $P_{\rm O}$ under excess oxygen conditions.

Structure Sensitivity of the Reaction

The surface of V_2O_5 -F has been found to be significantly different from that of V_2O_5 -U or V_2O_5 -RO (13, 14). Since the surface V=O species has been found to be the active oxygen species for the furan oxidation, turnover frequency (TF) for this reaction can be defined by

$$TF = R/L. (14)$$

Values of TF at 622 K were calculated from the results of R and L (Table 1) for various catalysts, and the results are also shown in Table 1. It is evident from Table 1 that TF changes significantly with the kind of catalysts; TF for V_2O_5 -U is much larger than TF for V_2O_5 -F, and TF for V_2O_5 -RO is larger than TF for V_2O_5 -F. These behaviors in the furan oxidation are in contrast to those in the benzene oxidation (12) and indi-

cate that the furan oxidation on V₂O₅ catalysts is a structure-sensitive reaction. Fusion of a solid would generally lead to a smooth surface with a decreased number of surface defects (e.g., steps, kinks, or vacancies), while severe redox treatment of a solid with few surface defects would tend to increase their number. Furthermore, no impurity peaks were observed in the XPS spectrum of the V₂O₅-U, V₂O₅-F, or V_2O_5 -RO. Since the surface V=O species has been shown to be the active oxygen species, the surface V=0 species at the surface defects are considered to be much more active than that in the smooth (010) plane.

Activity of Supported Catalysts

In general, the activity of supported catalysts is determined by two factors: (i) the number of active sites and (ii) the specific activity of the active site, that is, the turnover frequency. The separation of these two factors is indispensable for detailed understanding the role of the support in a given reaction. As shown in Table 2, the rate (R) for V_2O_5/Al_2O_3 and V_2O_5/TiO_2 catalysts is larger than that for V₂O₅-U, indicating the promoting effect of the Al₂O₃ or TiO_2 support. The number of surface V=Ospecies (L) for V_2O_5/Al_2O_3 and V_2O_5/TiO_2 catalysts is much larger than that for the unsupported V_2O_5 , while the turnover frequency (TF) for the supported catalysts is smaller than that for the V_2O_5 -U. This means that the promoting effect of Al₂O₃ or TiO₂ is to increase the number of surface V=0 species, but the specific activity of the surface V=O species is not increased by the support. Figure 5 shows the relationship between the turnover frequency (TF) and the number of V_2O_5 layers (N) for V_2O_5/TiO_2 and V_2O_5/Al_2O_3 . The turnover frequency for V₂O₅/TiO₂ decreases monotonically with decreasing the number of V₂O₅ layers on TiO₂. This indicates that the retarding effect of TiO₂ on the specific activity of the surface V=O species becomes

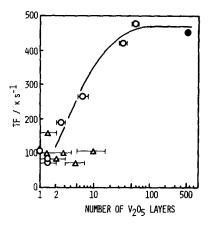


FIG. 5. Relationship between the turnover frequency (TF) for furan oxidation and the number of V_2O_5 layers on support: (O) $V_2O_5/\text{Ti}O_2$; (\triangle) V_2O_5/Al_2O_3 ; (\bullet) V_2O_5-U .

greater with the decreasing number of V₂O₅ layers.

According to Vejux and Courtine (34), there is remarkable fit of the crystallographic patterns between the (010) face of V_2O_5 and the TiO₂ surface. It is therefore considered that a smooth V₂O₅ surface with few defects is formed for the V₂O₅/TiO₂ catalysts having a low concentration of V_2O_5 , and that the number of surface defects increases with increasing content of V_2O_5 . Since the activity of the surface V=O species at the surface defect is much higher than that in the smooth (010) face, this explains the significant reduction in the turnover frequency for V₂O₅/TiO₂ compared with that for V₂O₅-U and the increase of the turnover frequency with increasing content of V₂O₅ in V₂O₅/TiO₂

For both furan oxidation and benzene oxidation, the surface V=O species plays the active oxygen species and maleic anhydride is formed as a partial oxidation product. However, the structural requirement of the active site for furan oxidation is significantly different from that for benzene oxidation: The roughness of the catalyst surface greatly affects the activity for furan oxidation, while it does not affect the activity for benzene oxidation (12). In other words, the surface V=O species at the sur-

face defects is considered to be much more active than that in smooth (010) face of V₂O₅ for furan oxidation, while the specific activity of the surface V=O species for benzene oxidation is not changed by the roughness of the catalyst surface. In accordance with the difference in the structural requirement of the active site, the activity of the V₂O₅/TiO₂ catalyst changes greatly with the kinds of reactions. The specific activity of the surface V=O species is increased by supporting V₂O₅ on TiO₂ for benzene oxidation (12), while it is decreased for furan oxidation (Fig. 5). Benzene is a nonpolar cyclic planar molecule, whereas furan is a polar cyclic molecule having an oxygen atom. Such a difference in the structure and property of reactant molecule may be responsible for the difference in the structural requirement of the active site. Further discussion about the reason for the difference will be made in a subsequent paper on the basis of additional data including those of ¹⁸O-tracer experiments.

Selectivity in Furan Oxidation

Figure 6 shows relationships between the selectivity to partial oxidation product [S(MA)] and the conversion of furan, which were obtained from the results under excess oxygen conditions at various temperatures. As shown, S(MA) is independent of the conversion for any catalyst. This indicates that consecutive oxidation of the partial oxidation product to CO or CO₂ was negligible under the present experimental conditions. In other words, the difference in the selectivity among catalysts is not brought about by the consecutive oxidation of the partial oxidation product.

As shown in Fig. 4, the oxidation state of the V_2O_5 -U catalyst changes greatly with P_0 . Under the excess oxygen condition, the catalyst is kept in the highest oxidation state, i.e., V^{5+} , while it is reduced as P_0 decreases. As shown in Fig. 2, S(MA), $S(CO_2)$, and S(CO) do not change with P_0 . This means that the selectivity in furan oxi-

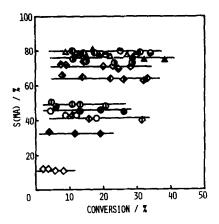


Fig. 6. Relationship between the conversion and selectivity for furan oxidation on unsupported V_2O_5 , $V_2O_5/\text{Ti}O_2$, and V_2O_5/Al_2O_3 catalysts: (\triangle) $V_2O_5-\text{U}$; (\triangle) $V_2O_5-\text{RO}$; (\bigcirc , \bigcirc , \bigcirc , \bigcirc , \bigcirc , \bigcirc , \bigcirc) $V_2O_5/\text{Ti}O_2$ with V_2O_5 contents, 1, 2, 5, 10, 25, 50, and the monolayer catalyst, respectively. (\diamondsuit , \diamondsuit , \diamondsuit , \diamondsuit , \diamondsuit , \diamondsuit , \diamondsuit) V_2O_5/Al_2O_3 with V_2O_5 contents 2, 5, 10, 25, 35, 50, and the monolayer catalyst, respectively. Reaction temperature = 583-653 K, P_F = 0.0074 atm, P_O = 0.397 atm.

dation is independent of the oxidation state of the catalyst at least under the present experimental conditions where conversion of furan is below 40% and consecutive oxidation of the partial oxidation product to CO and CO_2 is negligible, and where the catalyst is in its steady state at a given level of P_0 .

As shown in Table 1, the selectivity is almost independent of the kind of unsupported V₂O₅ catalysts, in contrast to the behavior in the activity of the catalyst. This indicates that the selectivity is not affected by the change in the surface roughness. As shown in Table 2, the selectivity under the excess O₂ condition changes greatly with the catalysts. Figure 7 shows results of the selectivity to partial oxidation products [S(MA)] against the number of V_2O_5 layers on support(N). When N is 1 or 2, S(MA) is low, while it increases markedly with the increase in N to 5, and attains a constant value above 5 layers. It is interesting to note that the relationship between S(MA) and N is almost common to both V_2O_5/TiO_2 and V_2O_5/Al_2O_3 catalysts, while

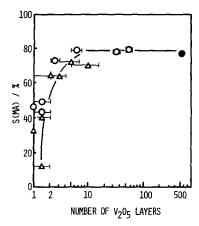


FIG. 7. Relationship between the selectivity and the number of V_2O_5 layers on support: (\bigcirc) V_2O_5/TiO_2 ; (\triangle) V_2O_5/Al_2O_3 ; (\bigcirc) V_2O_5-U .

the structures of the V_2O_5/TiO_2 catalysts differ significantly from those of V_2O_5/Al_2O_3 catalysts (9–11). This indicates that the number of V_2O_5 layers is an important factor for determining the selectivities in the oxidation of furan; V_2O_5 layers are necessary for the selective oxidation of furan to MA.

The structure-selectivity correlation for furan oxidation is similar to that for benzene oxidation(12). The roughness of the catalyst surface does not affect the selectivity for both reactions. The number of V₂O₅ layers is an important factor for determining the selectivity for both reactions: the monolayer catalyst exhibits low selectivity to the partial oxidation product, and V₂O₅ layers are necessary for the selective oxidation. Although further studies are necessary to clarify molecular mechanism for the correlation between S(MA) and N, a discussion similar to that described for the benzene oxidation may be applicable to the furan oxidation: As described above, the reaction proceeds by the reduction-oxidation mechanism, and the surface V=O species plays the active oxygen species. It has also been shown that there exists a Brønsted acid site adjacent to the surface V=O species on the supported vanadium oxide catalyst (9-11, 30). These suggest that the furan molecule is adsorbed and activated on the Brønsted acid site and that the reaction is initiated by the nucleophilic attack of the oxygen atom of surface V=O species to the adsorbed furan molecule to form an intermediate species. Judging from the stoichiometry of the reaction [Eq. (3)], subsequent introduction of oxygen atoms to the intermediate species is necessary to complete the reaction. Since the reaction proceeds by the reduction-oxidation mechanism, these oxygen atoms are not directly supplied from gaseous O2 but supplied through the oxygen of the catalyst. It is well known that the oxygen of V₂O₅ can migrate from the bulk to the surface. When the V₂O₅ layers on support are thick enough, the oxygen in the V_2O_5 layers can therefore be supplied to oxidize the intermediate species. As for a catalyst with monolayer V₂O₅ or with very thin V₂O₅ layers on the support, the oxygen cannot be supplied from the bulk, but is supplied by the migration of surface oxygen. This change is the mode of oxidation of the intermediate species with the number of V_2O_5 layers (N) may provide one of the reasons for the correlation between S(MA) and N. The change in S(CO)/ $S(CO_2)$ with the catalysts (Table 2) may also be explained by the change in the mode of oxidation of the intermediate species.

ACKNOWLEDGMENTS

This work was partially supported by a grant-in-aid for Scientific Research (59470097) and for Encouragement of Young Scientists (59750655) from the Ministry of Education, Science, and Culture, Japan.

REFERENCES

- Hucknall, D. J., "Selective Oxidation of Hydrocarbons." Academic Press, New York, 1974.
- 2. Wainwright, M. S., and Foster, N. R., Catal. Rev. 19, 211 (1979).
- Dadyburjor, D. B., Jewur, S. S., and Ruckenstein, E., Catal. Rev. 19, 293 (1979).
- Bielański, A., and Haber, J., Catal. Rev. 19, 1 (1979).
- Cullis, C. F., and Hucknall, D. J., "Catalysis," Vol. 5, p. 273. The Chemical Society, London, 1982
- Haber, J., in "Proceedings, 8th International Congress Catalysis, West Berlin," I-85 (1984).

- Miyamoto, A., Yamazaki, Y., Inomata, M., and Murakami, Y., J. Phys. Chem. 85, 2366 (1981).
- Inomata, M., Miyamoto, A., and Murakami, Y., J. Phys. Chem. 85, 2372 (1981).
- Inomata, M., Mori, K., Miyamoto, A., Ui, T., and Murakami, Y., J. Phys. Chem. 87, 754 (1983).
- Inomata, M., Mori, K., Miyamoto, A., and Murakami, Y., J. Phys. Chem. 87, 761 (1983).
- Murakami, Y., Inomata, M., Mori, K., Ui, T., Suzuki, K., Miyamoto, A., and Hattori, T., in "Preparation of Catalysts III" (G. Poncelet, P. Grange, and P. A. Jacobs, Eds.), p. 531. Elsevier, Amsterdam, 1983.
- Mori, K., Inomata, M., Miyamoto, A., and Murakami, Y., J. Chem. Soc. Faraday Trans. 1 80, 2655 (1984).
- Mori, K., Miyamoto, A., and Murakami, Y., J. Phys. Chem. 88, 2735 (1984).
- Mori, K., Miyamoto, A., and Murakami, Y., J. Phys. Chem. 88, 2741 (1984).
- Mori, K., Miura, M., Miyamoto, A., and Murakami, Y., J. Phys. Chem. 88, 5232 (1984).
- Miyamoto, A., Mori, K., Inomata, M., and Murakami, Y., in "Proceedings, 8th International Congress Catalysis, West Berlin," IV-285 (1984).
- Bond, G. C., and Brückman, K., Faraday Discuss. Chem. Soc. 72, 235 (1981).
- Cole, D. J., Cullis, C. F., and Hucknall, D. J., J. Chem. Soc. Faraday Trans. 1 72, 2185 (1976).
- Srivastava, R. D., and Stiles, A. B., J. Catal. 77, 192 (1982).
- van Hengstum, A. J., van Ommen, J. G., Bosch,
 H., and Gellings, P. J., in "Proceedings, 8th Inter-

- national Congress on Catalysis, West Berlin," IV-297 (1984).
- Koziolowski, R., Pettifier, R. F., and Thomas,
 J. M., J. Phys. Chem. 87, 5175 (1983).
- Ono, T., Nakagawa, Y., Miyata, H., and Kubokawa, Y., Bull. Chem. Soc. Jpn. 57, 1205 (1984).
- Wachs, I. E., Chan, S. S., Chersich, C. C., and Saleh, Y., in "Catalysis on the Energy Scene" (S. Kaliaguine and A. Mahay, Eds.), p. 275. Elsevier, Amsterdam, 1984.
- 24. Ai, M., Bull. Chem. Soc. Jpn. 43, 3490 (1970).
- Akimoto, M., and Echigoya, E., J. Chem. Soc. Faraday Trans. 1 73, 193 (1977).
- Ai, M., Harada, K., and Suzuki, K., Kogyo Kagaku Zasshi 73, 524 (1970).
- Yoshida, S., Iguchi, T., Ishida, S., and Tarama,
 K., Bull. Chem. Soc. Jpn. 45, 476 (1972).
- Roozeboom, F., Fransen, T., Mars, P., and Gellings, P. J., Z. Anorg. Allg. Chem. 25, 449 (1979).
- Niwa, M., Hattori, T., Takahashi, M., Shirai, K., Watanabe, M., and Murakami, Y., Anal. Chem. 51, 46 (1979).
- Inomata, M., Miyamoto, A., and Murakami, Y.,
 J. Catal. 62, 140 (1980).
- Tarama, K., Yoshida, S., Ishida, S., and Kakioka,
 H., Bull. Chem. Soc. Jpn. 41, 2840 (1969).
- 32. Frederickson, L. D., and Hansen, D. M., Anal. Chem. 35, 818 (1963).
- Mars, P., and van Krevelen, D. W., Chem. Eng. Sci. 3, 41 (1951).
- Vejux, A., and Courtine, P., J. Solid State Chem.
 93 (1978).